

International Journal of Pharmaceutics 224 (2001) 207

international journal of pharmaceutics

www.elsevier.com/locate/ijpharm

Erratum

Erratum to "Characterisation of instantaneous water absorption properties of pharmaceutical excipients" [Int. J. Pharm. 202 (2000) 141-149]☆

P. Hedenus ^a, M. Stømme Mattsson ^{b,*}, G.A. Niklasson ^b, O. Camber ^a, R. Ek ^c

^a AstraZeneca, 151 85 Södertälje, Sweden

^b Department of Materials Science, The Ångström Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden ^c Pharmaceuticals, Uppsala University, Box 580, 751 23 Uppsala, Sweden

The publisher regrets that in the above article on page 145 in equations (1) and (2) one of the symbols appeared incorrectly, $\rho_{\rm b}$ was stated instead of ρ_{l} . We apologize for any inconvenience caused to the authors. The corrected equations are reproduced below.

absorption capacity =
$$K \cdot \frac{\Delta I \rho_l}{m_{\text{powder}}}$$
 (1)

absorption rate =
$$K \cdot \frac{\mathrm{d}I}{\mathrm{d}t} \cdot \frac{\rho_l}{m_{\mathrm{powder}}}$$
 (2)

In these equations, the constant $K = 2.77 \cdot 10^{-4} \text{ m}^3 \text{ A}^{-1}$. ΔI is the magnitude of the drop in current and dI/dt is the time derivative of the current in the absorption step. ρ_I is the density of the liquid in the liquid container. The powder mass is denoted m_{powder} .

^{*} PII of original article: \$0378-5173(00)00436-1.

^{*} Corresponding author.

^{0378-5173/01/\$ -} see front matter @ 2001 Elsevier Science B.V. All rights reserved. PII: \$0378-5173(01)00798-0\$